Can climate sensitivity be estimated from short-term relationships of top-of-atmosphere net radiation and surface temperature?

نویسندگان

  • Bing Lin
  • Qilong Min
  • Wenbo Sun
  • Yongxiang Hu
  • Tai-Fang Fan
چکیده

Increasing the knowledge in climate radiative feedbacks is critical for current climate studies. This work focuses on short-term relationships between global mean surface temperature and top-of-atmosphere (TOA) net radiation. The relationships may be used to characterize the climate feedback as suggested by some recent studies. As those recent studies, an energy balance model with ocean mixed layer and both radiative and non-radiative heat sources is used here. The significant improvement of current model is that climate system memories are considered. Based on model simulations, short-term relationship between global mean surface temperature and TOA net radiation (or the linear striation feature as suggested by previous studies) might represent climate feedbacks when the system had no memories. However, climate systems with the same short-term feedbacks but different memories would have a similar linear striation feature. This linear striation feature reflects only fast components of climate feedbacks and may not represent the total climate feedback even when the memory length of climate systems is minimal. The potential errors in the use of short-term relationships in estimations of climate sensitivity could be big. In short time scales, fast climate processes may overwhelm long-term climate feedbacks. Thus, the climate radiative feedback parameter obtained from short-term data may not provide a reliable estimate of climate sensitivity. This result also suggests that long-term observations of global surface temperature and TOA radiation are critical in the understanding of climate feedbacks and sensitivities. Published by Elsevier Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance

Large climate feedback uncertainties limit the accuracy in predicting the response of the Earth’s climate to the increase of CO2 concentration within the atmosphere. This study explores a potential to reduce uncertainties in climate sensitivity estimations using energy balance analysis, especially top-of-atmosphere (TOA) radiation imbalance. The time-scales studied generally cover from decade t...

متن کامل

An Assessment of Wind Erosion Schemes in Dust Emission Simulations over the Middle East

Extended abstract 1- INTRODUCTION        Atmospheric aerosols, solid and liquid particles in the atmosphere, play a crucial role in the atmospheric radiation equilibrium. These particles have an influence on the scattering and absorption of short wavelength radiation, and on the other hand, affect radiation absorption and emission in long wavelengths. Dust particles are among the importan...

متن کامل

Trend of the Caspian Sea surface temperature changes

The interaction between sea and atmosphere has profound effects on the regions climate. Meanwhile, the sea surface temperature is considered as one of the most effective components of water bodies, and the controller of many atmospheric behaviors. Because of the importance of sea surface temperatures effects on atmospheric elements and also given the role of global warming on land and sea surfa...

متن کامل

The Dependence of Radiative Forcing and Feedback on Evolving Patterns of Surface Temperature Change in Climate Models

Experiments with CO2 instantaneously quadrupled and then held constant are used to show that the relationship between the global-mean net heat input to the climate system and the global-mean surface air temperature change is nonlinear in phase 5 of theCoupledModel Intercomparison Project (CMIP5) atmosphere– ocean general circulation models (AOGCMs). The nonlinearity is shown to arise from a cha...

متن کامل

Observed and modeled evolution of the tropical mean radiation budget at the top of the atmosphere since 1985

[1] We have used satellite-based broadband radiation observations to construct a longterm continuous 1985–2005 record of the radiative budget components at the top of the atmosphere for the tropical region (20 S–20 N). On the basis of the constructed record we have derived the most conservative estimate of their trends. We compared the interannual variability of the net radiative fluxes at the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017